Local Binary Haar Feathers Kadane and Multi-Threshold AdaBoost for Facial Classification and Recognition
نویسنده
چکیده
A face recognition algorithm based on local binary Haar feathers which represented as Kadane optimizing multi-threshold AdaBoost was proposed according to the problems of texture shape feature representation and classification algorithm accuracy in the process of facial classifying detection and recognition, First, improve the traditional expression by using image Local binary pattern of Haar features , improve image model of texture and shape feature expression ability ; Secondly, for single threshold weak learning algorithm we can not make full use of local binary Haar feature information, resulting in a lower classification accuracy problem proposed Kadane optimizing multithreshold AdaBoost classifier, to achieve local binary Haar feature representation of facial high accuracy recognition; Finally, through the experiments show, efficient face recognition rate can reach more than 90% by the algorithm,which is superior to the selected comparison algorithm.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملFacial Expression Recognition and Analysis: A Comparison Study of Feature Descriptors
Facial expression recognition (FER) is a crucial technology and a challenging task for human–computer interaction. Previous methods have been using different feature descriptors for FER and there is a lack of comparison study. In this paper, we aim to identify the best features descriptor for FER by empirically evaluating five feature descriptors, namely Gabor, Haar, Local Binary Pattern (LBP),...
متن کاملROY, MARCEL: HLBP FEATURE FOR FAST ILLUMINATION INVARIANT FACE DETECTION1 Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection
Face detection is the first step in many visual processing systems like face recognition, emotion recognition and lip reading. In this paper, we propose a novel feature called Haar Local Binary Pattern (HLBP) feature for fast and reliable face detection, particularly in adverse imaging conditions. This binary feature compares bin values of Local Binary Pattern histograms calculated over two adj...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کامل